A ug 1 99 9 The projective geometry of Freudenthal ’ s magic square

نویسندگان

  • J. M. Landsberg
  • L. Manivel
چکیده

We connect the algebraic geometry and representation theory associated to Freudenthal's magic square. We give unified geometric descriptions of several classes of orbit closures, describing their hyperplane sections and desingularizations, and interpreting them in terms of composition algebras. In particular, we show how a class of invariant quartic polynomials can be viewed as generalizations of the classical discriminant of a cubic polynomial.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representation Theory and Projective Geometry

This article consists of three parts that are largely independent of one another. The first part deals with the projective geometry of homogeneous varieties, in particular their secant and tangential varieties. It culminates with an elementary construction of the compact Hermitian symmetric spaces and the closed orbits in the projectivization of the adjoint representation of a simple Lie algebr...

متن کامل

Projective planes over quadratic 2-dimensional algebras

The split version of the Freudenthal-Tits magic square stems from Lie theory and constructs a Lie algebra starting from two split composition algebras [5, 20, 21]. The geometries appearing in the second row are Severi varieties [24]. We provide an easy uniform axiomatization of these geometries and related ones, over an arbitrary field. In particular we investigate the entry A2 × A2 in the magi...

متن کامل

Magic Squares and Matrix Models of Lie Algebras

This paper is concerned with the description of exceptional simple Lie algebras as octonionic analogues of the classical matrix Lie algebras. We review the Tits-Freudenthal construction of the magic square, which includes the exceptional Lie algebras as the octonionic case of a construction in terms of a Jordan algebra of hermitian 3× 3 matrices (Tits) or various plane and other geometries (Fre...

متن کامل

OP 2 and the G 2 to B 3 to D 4 to B 4 to F 4 Magic Triangle

Mathematicians and physicists have long wondered why the Octionic Projective Plane (OP2), the Freudenthal – Tits Magic Square, or Magic Triangle and certain functions of the Octonions and Sedenions abruptly end. This paper lays out the various elements included in this conundra, with the assumption that irregularities and undiscovered relationships between these structures account for the anoma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999